Double Hull Technology Design and application of crashworthy ship structures

Alex W. Vredeveldt

TNO | Knowledge our business

R = P C

Tanker navigation, roundtable, 7 June 2006, Strassbourg

Contents

- 1. Preamble
- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

- 1. Preamble
- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

Nothing new

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness

T

- 7. Conclusion
- 8. Acknowledgements

V.U. Minorsky

Preamble

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

- Goal based standards, only through risk based assessments
- Class rules based on risk concept
- Implicit Risk must become explicit
- Transparency of design
- Mandatory in offshore
- Mandatory in (petro-) chemical industry
- Design and operational responsibility where it belongs
- Make money

Risk / reliability concept

R = pE

- 5. Crashworthiness assessments
- 6. Concepts crashworthiness

2. Crashworthiness and risk

3. Application examples

4. Pragmatic use in ADNR

7. Conclusion

1. Preamble

8. Acknowledgements

R risk

- probability of occurrence of a calamity р
- E effect of the calamity

Safety = 1 - Risk

Risk / reliability concept

R =p E

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

2. Crashworthiness and risk

- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

R = **P**E

1. Preamble

- 2. Crashworthiness and risk

- 5. Crashworthiness assessment
- 6. Concepts crashworthiness

- 7. Conclusion
- 8. Acknowledgements

R = **O** E

1. Preamble

- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness

- 7. Conclusion
- 8. Acknowledgements

R = **P** E

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

Energy available, inelastic collision Ship passages Lobith, 1999 1.2 Probability of Exceedence [-] ······ 2/3 speed – Full speed 0.2 0 5 10 15 20 25 30 0 Energy [MJ]

Table 7

Calculated failure probabilities, scenario I, CPDF 66 %

Bow type	Failure probability reference	Failure probability new
Scenario I Push barge	0.56	0.08

2. Crashworthiness and risk

3. Application examples

4. Pragmatic use in ADNR

5. Crashworthiness assessments

6. Concepts crashworthiness

7. Conclusion

8. Acknowledgements

Consequence increase 760 m³ C_n/C_r = 2.24

Probability decrease 0.08/0.56=0.14

0.14 x 2.24 < 1

R =p E

Damage stability

R =p E

1. Preamble

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

Attained subdivision index

$$A = \sum p_i \cdot s_i$$

- A attained subdivision index
 - looks like R
- *p_i* probability of flooding of compartment(s)looks like p
- *s_i* vessel stays afloat and does not capsize
 mostly either 1.0 or 0.0, i.e. digital
 looks like effect E

Damage stability

probability of flooding of compartment(s)in SOLAS regulations based on statisticsdesigner does not control this parameter

vessel stays afloat and does not capsize the usual design variable: smaller compartments permanent buoyancy (sometimes) cross flooding

. . .

Damage stability

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

Guideline

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

Guideline

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

Guideline

2. Crashworthiness and risk

- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

1. Preamble

2. Crashworthiness and risk

3. Application examples

- 4. Pracmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

Complex and highly non-linear phenomenon

- External dynamics
 - Global ship motion and water interaction
- Internal mechanics
 - Large plastic deformations
 - Buckling
 - Fracture and crack propagation
 - Contact/Friction

Impact energy is mainly absorbed by large plastic deformations.

Substantial loss in energy absorbing capability after fracture.

Crucial that fracture and crack propagation are correctly determined.

- . Determines if a compartment will be flooded and if oil leakage will occur.
- . Influences the global deformation modes.

1. Preamble

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pracmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

External dynamics

$$E_{dis} = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} v^2$$

E _{dis}	energy to be dissipated	[kJ]
<i>m</i> ₁	mass striking ship	[tonnes]
<i>m</i> ₂	mass struck ship	[tonnes]
V	collision speed	[m/s2]

Internal mechanics

Partial differential equations

$$x'' = \frac{(F_{ex}^{(n)} - F_{int}^{(n)})}{M}$$

- is the diagonal mass matrix,
- the applied load vector at time $t^{(n)}$,
- the stress divergence or internal load vector at time $t^{(n)}$,
- the vector of nodal accelerations in a global co-ordinate system

Μ

F_{ex}

F_{int}

X''

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pracmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

ØThe Ductile Damage Process

1. Preamble

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

- Nucleation of voids from inclusionsVoid growth
- •Void coalescence

ØThe governing damage process is dependent of:

- •The stress triaxiality (s_H / s_{eq})
- •The plastic strain (e_{ρ})
- •Void shape, void density and material

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pracmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

1. Preamble

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

TNO CMC

Drop Tower Test third specimen

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pracmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

1. Preamble

2. Crashworthiness and risk

3. Application examples

4. Pragmatic use in ADNR

- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

"Ice" strengthening

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

"Ice" strengthening

inclined I-core

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

inclined I-core

2. Crashworthiness and risk

3. Application examples

- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness

- 7. Conclusion
- 8. Acknowledgements

Y-type side structure

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

Y-type side structure

- 1. Preamble
- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

SPS structure

1. Preamble

2. Crashworthiness and risk

3. Application examples

- 4. Pragmatic use in ADNR
- 5. Craceworthiness assessments
- 6. Concepts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

SPS structure

Tanker navigation, roundtable, 7 June 2006, Strassbourg

Other steel qualities

Overview crashworthy concepts

1. Preamble

2. Crashworthiness and risk

3. Application examples

4. Pragmatic use in ADNR

- 5. Crashworthiness assessments
- 6. Concepts crashworthiness

7. Conclusion

8. Acknowledgements

Crashworthy Concept	Technical evidence	Operational
"Ice" strengthening	desk top and full scale test	no
inclined I - core	desk top and full scale test	no
X - core	desk top and full scale test	no
Y - Type, Royal Schelde	desk top and full scale test	yes
SPS	desk top and lab tests	no
austenitic steel	desk top and lab tests	no

Conclusion

- 2. Crashworthiness and risk
- 3. Application examples
- 4. Pragmatic use in ADNR
- 5. Crashworthiness assessments
- 6. Con epts crashworthiness
- 7. Conclusion
- 8. Acknowledgements

- 1. Risk/Reliability is a viable concept in ship design
- 2. Risk/Reliability is the *only* concept outside the conventional design space
- 3. Crashworthiness can be treated as a design parameter through applying risk based design
- 4. Crashworthiness can save money
- 5. Authorities are willing to consider
- 6. Further education is crucial

Acknowledgements

